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Task: Object Detection in Images
Which of the following 20 categories occur in this image?
aeroplane, bird, bicycle, boat, bottle, bus, car, cat, chair, cow, diningtable
dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tv/monitor

chair, diningtable, sofa, tv/monitor
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Task: Object Detection in Images
Which of the following 20 categories occur in this image?
aeroplane, bird, bicycle, boat, bottle, bus, car, cat, chair, cow, diningtable
dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tv/monitor

horse, person



Object Co-Occurrence and Context

cat person chair, diningtable, cow aeroplane, person
sofa, tv/monitor

horse, person chair, sofa, chair, dog, sofa bicycle, person train
person pottedplant

chair, car motorbike, pottedplant dog, sofa
diningtable person

Natural images often contain more than 1 object class.
Co-occurrence is not random, but e.g. due to location or function.

Image context gives valuable clues about object presence.. . .



Single Class Object Detection

sheep? dog? car?

yes/no yes/no yes/no

Separate per-class object detection classifies only one candidate
region at a time.

Co-occurrence and context information is discarded.



Joint Class Object Detection

sheep? dog? car?

yes/no yes/no yes/no

We propose a system that performs joint object detection.
It can use the information of

all candidate objects regions (co-occurance),
the full image (context).



Joint Training for Multi-Class Detection
Pattern Recognition Setup:

Training images: I1, . . . , In

Candidate regions for K classes: R1
i , . . . ,RK

i for each image,
I w.l.o.g. at most one object region per class per image

Represent each image or region by a feature vector xk
i ∈ X k .

Labels yk
i =

+1 if Rk
i is really of class k

−1 otherwise, set Rk
i to a background region.
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Joint Training for Multi-Class Detection

Separate Per-Class Training
Train classifiers fk : X k → R, one per class.

input: candidate region for class k,
output: confidence that the region is of
object class k.

Context-Aware Joint Training
Train classifiers fk : X 0 × · · · × XK → RRR,
one per class.

input: candidate regions for all classes
k = 1, . . . ,K and the full image (k = 0),
output: confidence that region k is of
object class k.



Multi-Input SVM
We model each fk as a multi-input support vector machine:

f k : X 0 × · · · × XK → R, for k = 1, . . . ,K .

Define a joint kernel function

kk(X 0 × · · · × XK )× (X 0 × · · · × XK )→ R.

kk( (x0, . . . , xK ), (x ′0, . . . , x ′K ) ) =
K∑

j=0
βk

j κj( x j , x ′j ),

where the κj are base kernels between image regions.
Class dependent mixing coefficients: βk

j ∈ [0, 1], ∑K
j=0 β

k
j = 1.

The trained fk has the form

f k(x0, . . . , xK ) =
K∑

j=0
βk

j

n∑
i=0

yk
i α

k
i κj( x j , x j

i ).



Mixing coefficients
The trained fk has the form

f k(x0, . . . , xK ) =
K∑

j=0
βk

j

n∑
i=0

yk
i α

k
i κj( x j , x j

i ).

Mixing coefficients βk
j are crucial:

βk
j = δk,j ⇔

fk depends only on xk .

βk
j 6= 0 ⇒

region x j influences fk

The best choice of βk
j is

class and data dependent.
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Choices for the mixing coefficients

We can set βk
j based on a priori knowledge:

chairs and tables tend to co-occur in images.
horses and persons tend to co-occur in images.
cars and busses tend to co-occur in images.
. . .

Problems:
Requires human interaction.
Requires semantic knowledge about the classes.



Choices for the mixing coefficients
We can set βk

j based on (relative) co-occurrence in a dataset:
 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20

aeroplane [1]
bicycle [2]

bird [3]
boat [4]

bottle [5]
bus [6]
car [7]
cat [8]

chair [9]
cow [10]

diningtable [11]
dog [12]

horse [13]
motorbike [14]

person [15]

pottedplant [16]
sheep [17]

sofa [18]
train [19]

tvmonitor [20]
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Problems:
We discard negative dependencies: if e.g. cats and aeroplanes
never co-occur, this can be used for prediction.



Choices for the mixing coefficients
We can set βk

j based on class correlation coefficients:
1 2 3 4 5 6 7 8 9 10 11121314151617181920

aeroplane [1]
bicycle [2]

bird [3]
boat [4]

bottle [5]
bus [6]
car [7]
cat [8]

chair [9]
cow [10]

diningtable [11]
dog [12]

horse [13]
motorbike [14]

person [15]

pottedplant [16]
sheep [17]

sofa [18]
train [19]

tvmonitor [20]
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

≥0.5

Problems:
This is generative, a priori information about the dataset.
We need discriminative information about the base classifiers.



Learn the mixing coefficients

Learn the optimal βk
j directly from training data.

SVM optimization problem for fixed β

min
wj∈Hj , ξk

i ≥0

1
2

K∑
j=0

1
βk

j
‖wk

j ‖2
Hj + C

n∑
i=1

ξk
i

subject to

yk
i
∑

j
〈wk

j , ϕj(x j
i )〉Hj ≥ 1− ξk

i for i = 1, . . . n.

Convex problem in wk
j , ξk

i .



Learn the mixing coefficients

Learn the optimal βk
j directly from training data.

SVM optimization problem including β [Zien and Ong, 2007]:

min
wj∈Hj , ξk

i ≥0
βk

j ∈[0,1]∑
j β

k
j =1

1
2

K∑
j=0

1
βk

j
‖wk

j ‖2
Hj + C

n∑
i=1

ξk
i

subject to

yk
i
∑

j
〈wk

j , ϕj(x j
i )〉Hj ≥ 1− ξk

i for i = 1, . . . n.

Jointly convex in wk
j , ξk

i and βk
j : Multiple-Kernel Learning



Summary of Joint Multi-Object Learning

Training Setup
Images x0

i , object regions xk
i , per-region labels yk

i ,
k = 1, . . . ,K , i = 1, . . . , n.

Multiple Kernel Learning (MKL)
Learn coefficients αk

i and βk
j for classifiers

f k(x0, x1, . . . , xK ) =
K∑

j=0
βk

j

n∑
i=0

yk
i α

k
i κj( x j , x j

i ).

Evaluation Setup
Image x ′0, predict candidate regions x ′k , k = 1, . . . ,K .
Decide each region x ′k based on sign f k(x ′0, x ′1, . . . , x ′K ).



Experimental Evaluation: PASCAL VOC

PASCAL VOC 2006
Natural scenes, 5,304 images, 9,507 objects, 10 classes.
Multiple classes, different viewpoints, truncations, occlusions

PASCAL VOC 2007
Natural scenes, 9,963 images, 24,640 objects, 20 classes
Multiple classes, very high intra-class variance
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Experimental Evaluation: PASCAL VOC

Bag-of-Feature Representation
Extract local SURF descriptors at keypoint locations
Quantize the descriptors using a visual codebook
Represent each image or image region by the histogram of
codebook IDs

↓ ↓ ↓ ↓

Define χ2 base kernels: κk(h, h′) = exp
(
− 1
γk

∑
j

(hj − h′j)2

|hj + h′j |
)
.



Experimental Evaluation: PASCAL VOC
Evaluation

Predict candidate regions using a sliding window approach.
Rank detections over all test image using the MKL-SVM.
Evaluate by precision-recall curves:

Joint learning improves detection accuracy (black vs. blue).



Interpretation of Learned Weights

How do the weights βk
j learned by MKL look like?

Every class depends on
object box.
High image weights:
→ scene classification?
Intuitive connections:
chair → diningtable,
person → bottle,
person → dog.

Several classes depend on
the person class.
βj

k are sparse.
rows: class to be detected

columns: class candidate boxes
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Visualization of Class Dependencies
We can turn the non-zero weights into a sparse dependency graph:
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Relative weights βj
k/
∑K

j=1 β
j
k , thresholded at 0.04

i → j means “Class i is used to predict class j .”
Clusters have semantic interpretation: vehicles, indoor, animals.



Summary

Joint object detection.
Decision for class j can depend
on all other class regions.

Multiple Kernel Learning to
learn influence of classes.

Improved detection quality.

Interpretable dependencies
between classes.
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